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Preface

Audience

This book has been written to serve the mathematical needs of students engaged in a

�rst course in engineering at degree level. It is primarily aimed at students of electronic,

electrical, communications and systems engineering. Systems engineering typically en-

compasses areas such as manufacturing, control and production engineering. The text-

book will also be useful for engineers who wish to engage in self-study and continuing

education.

Motivation

Engineers are called upon to analyse a variety of engineering systems, which can be

anything from a few electronic components connected together through to a complete

factory. The analysis of these systems bene�ts from the intelligent application of mathe-

matics. Indeed, many cannot be analysed without the use of mathematics. Mathematics

is the language of engineering. It is essential to understand how mathematics works in

order to master the complex relationships present in modern engineering systems and

products.

Aims

There are two main aims of the book. Firstly, we wish to provide an accessible, readable

introduction to engineering mathematics at degree level. The second aim is to encourage

the integration of engineering and mathematics.

Content

The �rst three chapters include a review of some important functions and techniques

that the reader may have met in previous courses. This material ensures that the book is

self-contained and provides a convenient reference.

Traditional topics in algebra, trigonometry and calculus have been covered. Also in-

cluded are chapters on set theory, sequences and series, Boolean algebra, logic, differ-

ence equations and the z transform. The importance of signal processing techniques is

reflected by a thorough treatment of integral transformmethods. Thus the Laplace, z and

Fourier transforms have been given extensive coverage.

In the light of feedback from readers, new topics and new examples have been added

in the �fth edition. Recognizing that motivation comes from seeing the applicability

of mathematics we have focused mainly on the enhancement of the range of applied

examples. These include topics on the discrete cosine transform, image processing, ap-

plications in music technology, communications engineering and frequency modulation.



xviii Preface

Style

The style of the book is to develop and illustrate mathematical concepts through ex-

amples. We have tried throughout to adopt an informal approach and to describe math-

ematical processes using everyday language. Mathematical ideas are often developed

by examples rather than by using abstract proof, which has been kept to a minimum.

This reflects the authors’ experience that engineering students learn better from prac-

tical examples, rather than from formal abstract development. We have included many

engineering examples and have tried to make them as free-standing as possible to keep

the necessary engineering prerequisites to aminimum. The engineering examples, which

have been carefully selected to be relevant, informative and modern, range from short il-

lustrative examples through to complete sections which can be regarded as case studies.

A further bene�t is the development of the link between mathematics and the physical

world. An appreciation of this link is essential if engineers are to take full advantage of

engineering mathematics. The engineering examples make the book more colourful and,

more importantly, they help develop the ability to see an engineering problem and trans-

late it into a mathematical form so that a solution can be obtained. This is one of the most

dif�cult skills that an engineer needs to acquire. The ability to manipulate mathemati-

cal equations is by itself insuf�cient. It is sometimes necessary to derive the equations

corresponding to an engineering problem. Interpretation of mathematical solutions in

terms of the physical variables is also essential. Engineers cannot afford to get lost in

mathematical symbolism.

Format

Important results are highlighted for easy reference. Exercises and solutions are provided

at the end of most sections; it is essential to attempt these as the only way to develop

competence and understanding is through practice. A further set of review exercises is

provided at the end of each chapter. In addition some sections include exercises that are

intended to be carried out on a computer using a technical computing language such as

MATLAB®, GNU Octave, Mathematica or Python®. The MATLAB® command syntax

is supported in several software packages as well as MATLAB® itself and will be used

throughout the book.

Supplements

A comprehensive Solutions Manual is obtainable free of charge to lecturers using this

textbook. It is also available for download via the web at www.pearsoned.co.uk/croft.

Finally we hope you will come to share our enthusiasm for engineering mathematics

and enjoy the book.

Anthony Croft

Robert Davison

Martin Hargreaves

James Flint

March 2017

http://www.pearsoned.co.uk/croft
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1 Review of algebraic
techniques

Contents 1.1 Introduction 1

1.2 Laws of indices 2

1.3 Number bases 11

1.4 Polynomial equations 20

1.5 Algebraic fractions 26

1.6 Solution of inequalities 33

1.7 Partial fractions 39

1.8 Summation notation 46

Review exercises 1 50

1.1 INTRODUCTION

This chapter introduces some algebraic techniques which are commonly used in engi-

neering mathematics. For some readers this may be revision. Section 1.2 examines the

laws of indices. These laws are used throughout engineering mathematics. Section 1.3

looks at number bases. Section 1.4 looks at methods of solving polynomial equations.

Section 1.5 examines algebraic fractions, while Section 1.6 examines the solution of

inequalities. Section 1.7 looks at partial fractions. The chapter closes with a study of

summation notation.

Computers are used extensively in all engineering disciplines to perform calcula-

tions. Some of the examples provided in this book make use of the technical comput-

ing language MATLAB®, which is commonly used in both an academic and industrial

setting.

Because MATLAB® and many other similar languages are designed to compute not

just with single numbers but with entire sequences of numbers at the same time, data

is entered in the form of arrays. These are multi-dimensional objects. Two particular

types of array are vectors andmatrices which are studied in detail in Chapters 7 and 8.
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Apart from being able to perform basic mathematical operations with vectors and

matrices, MATLAB® has, in addition, a vast range of built-in computational functions

which are straightforward to use but nevertheless are very powerful. Many of these high-

level functions are accessible by passing data to them in the form of vectors andmatrices.

A small number of these special functions are used and explained in this text. How-

ever, to get the most out of a technical computing language it is necessary to develop

a good understanding of what the software can do and to make regular reference to the

manual.

1.2 LAWS OF INDICES

Consider the product 6× 6× 6× 6× 6. This may be written more compactly as 65. We

call 5 the index or power. The base is 6. Similarly, y× y× y× y may be written as y4.

Here the base is y and the index is 4.

Example 1.1 Write the following using index notation:

(a) (−2)(−2)(−2) (b) 4.4.4.5.5 (c)
yyy

xxxx
(d)

aa(−a)(−a)

bb(−b)

Solution (a) (−2)(−2)(−2) may be written as (−2)3.

(b) 4.4.4.5.5 may be written as 4352.

(c)
yyy

xxxx
may be written as

y3

x4
.

(d) Note that (−a)(−a) = aa since the product of two negative quantities is positive.

So aa(−a)(−a) = aaaa = a4. Also bb(−b) = −bbb = −b3. Hence

aa(−a)(−a)

bb(−b)
=

a4

−b3
= −

a4

b3

Example 1.2 Evaluate

(a) 73 (b) (−3)3 (c) 23(−3)4

Solution (a) 73 = 7.7.7 = 343

(b) (−3)3 = (−3)(−3)(−3) = −27

(c) 23(−3)4 = 8(81) = 648

Most scienti�c calculators have an xy button to enable easy calculation of expressions

of a similar form to those in Example 1.2.

1.2.1 Multiplying expressions involving indices

Consider the product (62)(63). We may write this as

(62)(63) = (6.6)(6.6.6) = 65
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So

6263 = 65

This illustrates the �rst law of indices which is

aman = am+n

When expressions with the same base are multiplied, the indices are added.

Example 1.3 Simplify each of the following expressions:

(a) 39310 (b) 434446 (c) x3x6 (d) y4y2y3

Solution (a) 39310 = 39+10 = 319

(b) 434446 = 43+4+6 = 413

(c) x3x6 = x3+6 = x9

(d) y4y2y3 = y4+2+3 = y9

Engineering application 1.1

Power dissipation in a resistor

The resistor is one of the three fundamental electronic components. The other two

are the capacitor and the inductor, which we will meet later. The role of the resistor

is to reduce the current 	ow within the branch of a circuit for a given voltage. As

current 	ows through the resistor, electrical energy is converted into heat. Because

the energy is lost from the circuit and is effectively wasted, it is termed dissipated

energy. The rate of energy dissipation is known as the power, P, and is given by

P = I2R (1.1)

where I is the current flowing through the resistor and R is the resistance value. Note

that the current is raised to the power 2. Note that power, P, is measured in watts;

current, I, is measured in amps; and resistance, R, is measured in ohms.

There is an alternative formula for power dissipation in a resistor that uses the volt-

age, V , across the resistor. To obtain this alternative formula we need to use Ohm’s

law, which states that the voltage across a resistor,V , and the current passing through

it, are related by the formula

V = IR (1.2)

From Equation (1.2) we see that

I =
V

R
(1.3)

Combining Equations (1.1) and (1.3) gives

P =

�

V

R

�2

R =
V

R
·
V

R
· R =

V 2

R

➔
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Note that in this formula for P, the voltage is raised to the power 2. Note an im-

portant consequence of this formula is that doubling the voltage, while keeping the

resistance �xed, results in the power dissipation increasing by a factor of 4, that is

22. Also trebling the voltage, for a �xed value of resistance, results in the power dis-

sipation increasing by a factor of 9, that is 32.

Similar considerations can be applied to Equation 1.1. For a �xed value of resis-

tance, doubling the current results in the power dissipation increasing by a factor of

4, and trebling the current results in the power dissipation increasing by a factor of 9.

Consider the product 3(33). Now

3(33) = 3(3.3.3) = 34

Also, using the �rst law of indices we see that 3133 = 34. This suggests that 3 is the

same as 31. This illustrates the general rule:

a = a1

Raising a number to the power 1 leaves the number unchanged.

Example 1.4 Simplify (a) 565 (b) x3xx2

Solution (a) 565 = 56+1 = 57 (b) x3xx2 = x3+1+2 = x6

1.2.2 Dividing expressions involving indices

Consider the expression
45

43
:

45

43
=

4.4.4.4.4

4.4.4

= 4.4 by cancelling 4s

= 42

This serves to illustrate the second law of indices which is

am

an
= am−n

When expressions with the same base are divided, the indices are subtracted.

Example 1.5 Simplify

(a)
59

57
(b)

(−2)16

(−2)13
(c)

x9

x5
(d)

y6

y

Solution (a)
59

57
= 59−7 = 52

(b)
(−2)16

(−2)13
= (−2)16−13 = (−2)3
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(c)
x9

x5
= x9−5 = x4

(d)
y6

y
= y6−1 = y5

Consider the expression
23

23
. Using the second law of indices we may write

23

23
= 23−3 = 20

But, clearly,
23

23
= 1, and so 20 = 1. This illustrates the general rule:

a0 = 1

Any expression raised to the power 0 is 1.

1.2.3 Negative indices

Consider the expression
43

45
. We can write this as

43

45
=

4.4.4

4.4.4.4.4
=

1

4.4
=

1

42

Alternatively, using the second law of indices we have

43

45
= 43−5 = 4−2

So we see that

4−2 =
1

42

Thus we are able to interpret negative indices. The sign of an index changes when the

expression is inverted. In general we can state

a−m =
1

am
am =

1

a−m

Example 1.6 Evaluate the following:

(a) 3−2 (b)
2

4−3
(c) 3−1 (d) (−3)−2 (e)

6−3

6−2

Solution (a) 3−2 =
1

32
=

1

9

(b)
2

4−3
= 2(43) = 2(64) = 128

(c) 3−1 =
1

31
=

1

3

(d) (−3)−2 =
1

(−3)2
=

1

9

(e)
6−3

6−2
= 6−3−(−2) = 6−1 =

1

61
=

1

6
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Example 1.7 Write the following expressions using only positive indices:

(a) x−4 (b) 3x−4 (c)
x−2

y−2
(d) 3x−2y−3

Solution (a) x−4 =
1

x4

(b) 3x−4 =
3

x4

(c)
x−2

y−2
= x−2y2 =

y2

x2

(d) 3x−2y−3 =
3

x2y3

Engineering application 1.2

Power density of a signal transmitted by a radio antenna

A radio antenna is a device that is used to convert electrical energy into electromag-

netic radiation, which is then transmitted to distant points.

An ideal theoretical point source radio antenna which radiates the same power in

all directions is termed an isotropic antenna.When it transmits a radiowave, thewave

spreads out equally in all directions, providing there are no obstacles to block the

expansion of the wave. The power generated by the antenna is uniformly distributed

on the surface of an expanding sphere of area, A, given by

A = 4πr2

where r is the distance from the generating antenna to the wave front.

The power density, S, provides an indication of how much of the signal can po-

tentially be received by another antenna placed at a distance r. The actual power

received depends on the effective area or aperture of the antenna, which is usually

expressed in units of m2.

Electromagnetic �eld exposure limits for humans are sometimes speci�ed in terms

of a power density. The closer a person is to the transmitter, the higher the power

density will be. So a safe distance needs to be determined.

The power density is the ratio of the power transmitted, Pt, to the area over which

it is spread

S =
power transmitted

area
=

Pt

4πr2
=

Pt

4π
r−2 W m−2

Note that r in this equation has a negative index. This type of relationship is

known as an inverse square law and is found commonly in science and engineering.

Note that if the distance, r, is doubled, then the area, A, increases by a factor of

4 (i.e. 22). If the distance is trebled, the area increases by a factor of 9 (i.e. 32) and

so on. This means that as the distance from the antenna doubles, the power density,

S, decreases to a quarter of its previous value; if the distance trebles then the power

density is only a ninth of its previous value.
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1.2.4 Multiple indices

Consider the expression (43)2. This may be written as

(43)2 = 43. 43 = 43+3 = 46

This illustrates the third law of indices which is

(am)n = amn

Note that the indices m and n have been multiplied.

Example 1.8 Write the following expressions using a single index:

(a) (32)4 (b) (7−2)3 (c) (x2)−3 (d) (x−2)−3

Solution (a) (32)4 = 32×4 = 38

(b) (7−2)3 = 7−2×3 = 7−6

(c) (x2)−3 = x2×(−3) = x−6

(d) (x−2)−3 = x−2×−3 = x6

Consider the expression (2452)3. We see that

(2452)3 = (2452)(2452)(2452)

= 242424525252

= 21256

This illustrates a generalization of the third law of indices which is

(ambn)k = amkbnk

Example 1.9 Remove the brackets from

(a) (2x2)3 (b) (−3y4)2 (c) (x−2y)3

Solution (a) (2x2)3 = (21x2)3 = 23x6 = 8x6

(b) (−3y4)2 = (−3)2y8 = 9y8

(c) (x−2y)3 = x−6y3

Engineering application 1.3

Radar scattering

It has already been shown in Engineering application 1.2 that the power density of

an isotropic transmitter of radio waves is

S =
Pt

4π
r−2 W m−2

➔
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It is possible to use radio waves to detect distant objects. The technique involves

transmitting a radio signal, which is then re	ected back when it strikes a target. This

weak re	ected signal is then picked up by a receiving antenna, thus allowing a number

of properties of the target to be deduced, such as its angular position and distance from

the transmitter. This system is known as radar, which was originally an acronym

standing for RAdio Detection And Ranging.

When the wave hits the target it produces a quantity of re	ected power. The

power depends upon the object’s radar cross-section (RCS), normally denoted by

the Greek lower case letter sigma, σ , and having units of m2. The power re	ected at

the object, Pr, is given by

Pr = Sσ =
Ptσ

4π
r−2 W

Some military aircraft use special techniques to minimize the RCS in order to reduce

the amount of power they reflect and hence minimize the chance of being detected.

If the reflected power at the target is assumed to spread spherically, when it

returns to the transmitter position it will have the power density, Sr, given by

Sr =
power reflected at target

area
=

Pr

4π
r−2 W m−2

Substituting for the reflected power, Pr, gives

Sr =
power reflected at target

area
=

�

Ptσ

4π
r−2

�

4π
r−2 =

Ptσ

4π × 4π

(

r−2
�2

=
Ptσ

(4π)2
r−4 W m−2

Note that the product of the two r−2 terms has been calculated using the third law of

indices.

This example illustrates one of the main challenges with radar design which is that

the power density returned by a distant object is very much smaller than the transmit-

ted power, even for targets with a large RCS. For theoretical isotropic antennas, the

received power density depends upon the factor r−4. This factor diminishes rapidly

for large values of r, that is, as the object being detected gets further away.

In practice, the transmit antennas used are not isotropic but directive and often

scan the area of interest. They also make use of receive antennas with a large effective

area which can produce a viable signal from the small reflected power densities.

1.2.5 Fractional indices

The third law of indices states that (am)n = amn. If we take a = 2, m = 1
2
and n = 2 we

obtain

(21/2)2 = 21 = 2

So when 21/2 is squared, the result is 2. Thus, 21/2 is a square root of 2. Each positive

number has two square roots and so

21/2 =
√
2 = ±1.4142 . . .
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Similarly

(21/3)3 = 21 = 2

so that 21/3 is a cube root of 2:

21/3 =
3
√
2 = 1.2599 . . .

In general 21/n is an nth root of 2. The general law states

x1/n is an nth root of x

Example 1.10 Write the following using a single positive index:

(a) (3−2)1/4 (b) x2/3x5/3 (c) yy−2/5 (d)
√
k3

Solution (a) (3−2)1/4 = 3−2× 1
4 = 3−1/2 =

1

31/2

(b) x2/3x5/3 = x2/3+5/3 = x7/3

(c) yy−2/5 = y1y−2/5 = y1−2/5 = y3/5

(d)
√
k3 = (k3)1/2 = k3×

1
2 = k3/2

Example 1.11 Evaluate

(a) 81/3 (b) 82/3 (c) 8−1/3 (d) 8−2/3 (e) 84/3

Solution We note that 8 may be written as 23.

(a) 81/3 = (23)1/3 = 21 = 2

(b) 82/3 = (81/3)2 = 22 = 4

(c) 8−1/3 =
1

81/3
=

1

2

(d) 8−2/3 =
1

82/3
=

1

4

(e) 84/3 = (81/3)4 = 24 = 16

Engineering application 1.4

Skin depth in a radial conductor

When an alternating current signal travels along a conductor, such as a copper wire,

most of the current is found near the surface of the conductor. Nearer to the centre

of the conductor, the current diminishes. The depth of penetration of the signal,

termed the skin depth, into the conductor depends on the frequency of the signal.

Skin depth, illustrated in Figure 1.1, is de�ned as the depth at which the current

➔




