ENGINEERING MATHEMATICS

A Foundation for Electronic, Electrical, Communications and Systems Engineers

FIFTH EDITION

Anthony Croft • Robert Davison Martin Hargreaves • James Flint

Engineering Mathematics

© Pearson

At Pearson, we have a simple mission: to help people make more of their lives through learning.

We combine innovative learning technology with trusted content and educational expertise to provide engaging and effective learning experiences that serve people wherever and whenever they are learning.

From classroom to boardroom, our curriculum materials, digital learning tools and testing programmes help to educate millions of people worldwide - more than any other private enterprise.

Every day our work helps learning flourish, and wherever learning flourishes, so do people.

To learn more, please visit us at www.pearson.com/uk

A Foundation for Electronic, Electrical, Communications and Systems Engineers

Anthony Croft

Loughborough University

Robert Davison

Martin Hargreaves

Chartered Physicist

James Flint

Loughborough University

PEARSON EDUCATION LIMITED

Edinburgh Gate
Harlow CM20 2JE
United Kingdom
Tel: +44 (0)1279623623
Web: www.pearson.com/uk
First edition published under the Addison-Wesley imprint 1992 (print)
Second edition published under the Addison-Wesley imprint 1996 (print)
Third edition published under the Prentice Hall imprint 2001 (print)
Fourth edition published 2013 (print and electronic)
Fifth edition published 2017 (print and electronic)
© Addison-Wesley Publishers Limited 1992, 1996 (print)
© Pearson Education Limited 2001 (print)
© Pearson Education Limited 2013, 2017 (print and electronic)

The rights of Anthony Croft, Robert Davison, Martin Hargreaves and James Flint to be identified as authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

The print publication is protected by copyright. Prior to any prohibited reproduction, storage in a retrieval system, distribution or transmission in any form or by any means, electronic, mechanical, recording or otherwise, permission should be obtained from the publisher or, where applicable, a licence permitting restricted copying in the United Kingdom should be obtained from the Copyright Licensing Agency Ltd, Barnard's Inn, 86 Fetter Lane, London EC4A 1EN.

The ePublication is protected by copyright and must not be copied, reproduced, transferred, distributed, leased, licensed or publicly performed or used in any way except as specifically permitted in writing by the publishers, as allowed under the terms and conditions under which it was purchased, or as strictly permitted by applicable copyright law. Any unauthorised distribution or use of this text may be a direct infringement of the authors' and the publisher's rights and those responsible may be liable in law accordingly.

Pearson Education is not responsible for the content of third-party internet sites.

```
ISBN: 978-1-292-14665-2 (print)
    978-1-292-14667-6 (PDF)
    978-1-292-14666-9 (ePub)
```


British Library Cataloguing-in-Publication Data

A catalogue record for the print edition is available from the British Library

```
Library of Congress Cataloging-in-Publication Data
Names: Croft, Tony, 1957- author.
Title: Engineering mathematics : a foundation for electronic, electrical,
    communications and systems engineers / Anthony Croft, Loughborough
    University, Robert Davison, De Montfort University, Martin Hargreaves,
    De Montfort University, James Flint, Loughborough University.
Description: Fifth edition. | Harlow, England ; New York : Pearson, 2017. ||
    Revised edition of: Engineering mathematics : a foundation for electronic,
    electrical, communications, and systems engineers / Anthony Croft, Robert
    Davison, Martin Hargreaves. 3rd editon. 2001. | Includes index.
Identifiers: LCCN 2017011081| ISBN 9781292146652 (Print) | ISBN 9781292146676
    (PDF) | ISBN 9781292146669 (ePub)
Subjects: LCSH: Engineering mathematics. | Electrical
    engineering-Mathematics. | Electronics-Mathematics.
Classification: LCC TA330 .C76 2017 | DDC 510-dc23
LC record available at https://lccn.loc.gov/2017011081
A catalog record for the print edition is available from the Library of Congress
10987654321
21 20 19 18 17
```

Print edition typeset in 10/12 Times Roman by iEnerziger Aptara ${ }^{\circledR}$, Ltd.
Printed in Slovakia by Neografia

To Kate, Tom and Harvey - A.C.
To Kathy - R.D.
To my father and mother - M.H.
To Suzanne, Alexandra and Dominic - J.F.

This page intentionally left blank

Contents

Preface xvii
Acknowledgements xix
Chapter 1 Review of algebraic techniques 1
1.1 Introduction 1
1.2 Laws of indices 2
1.3 Number bases 11
1.4 Polynomial equations 20
1.5 Algebraic fractions 26
1.6 Solution of inequalities 33
1.7 Partial fractions 39
1.8 Summation notation 46
Review exercises 1 50
Chapter 2 Engineering functions 54
2.1 Introduction 54
2.2 Numbers and intervals 55
2.3 Basic concepts of functions 56
2.4 Review of some common engineering functions and techniques 70
Review exercises 2 113
Chapter 3 The trigonometric functions 115
3.1 Introduction 115
3.2 Degrees and radians 116
3.3 The trigonometric ratios 116
3.4 The sine, cosine and tangent functions 120
3.5 The sinc x function 123
3.6 Trigonometric identities 125
3.7 Modelling waves using $\sin t$ and $\cos t$ 131
3.8 Trigonometric equations 144
Review exercises 3 150
Chapter 4 Coordinate systems 154
4.1 Introduction 154
4.2 Cartesian coordinate system - two dimensions 154
4.3 Cartesian coordinate system - three dimensions 157
4.4 Polar coordinates 159
4.5 Some simple polar curves 163
4.6 Cylindrical polar coordinates 166
4.7 Spherical polar coordinates 170
Review exercises 4 173
Chapter 5 Discrete mathematics 175
5.1 Introduction 175
5.2 Set theory 175
5.3 Logic 183
5.4 Boolean algebra 185
Review exercises 5 197
Chapter 6 Sequences and series 200
6.1 Introduction 200
6.2 Sequences 201
6.3 Series 209
6.4 The binomial theorem 214
6.5 Power series 218
6.6 Sequences arising from the iterative solution of non-linear equations 219
Review exercises 6 222
Chapter 7 Vectors 224
7.1 Introduction 224
7.2 Vectors and scalars: basic concepts 224
7.3 Cartesian components 232
7.4 Scalar fields and vector fields 240
7.5 The scalar product 241
7.6 The vector product 246
7.7 Vectors of n dimensions 253
Review exercises 7 255
Chapter 8 Matrix algebra 257
8.1 Introduction 257
8.2 Basic definitions 258
8.3 Addition, subtraction and multiplication 259
8.4 Using matrices in the translation and rotation of vectors 267
8.5 Some special matrices 271
8.6 The inverse of a 2×2 matrix 274
8.7 Determinants 278
8.8 The inverse of a 3×3 matrix 281
8.9 Application to the solution of simultaneous equations 283
8.10 Gaussian elimination 286
8.11 Eigenvalues and eigenvectors 294
8.12 Analysis of electrical networks 307
8.13 Iterative techniques for the solution of simultaneous equations 312
8.14 Computer solutions of matrix problems 319
Review exercises 8 321
Chapter 9 Complex numbers 324
9.1 Introduction 324
9.2 Complex numbers 325
9.3 Operations with complex numbers 328
9.4 Graphical representation of complex numbers 332
9.5 Polar form of a complex number 333
9.6 Vectors and complex numbers 336
9.7 The exponential form of a complex number 337
9.8 Phasors 340
9.9 De Moivre's theorem 344
9.10 Loci and regions of the complex plane 351
Review exercises 9 354
Chapter 10 Differentiation 356
10.1 Introduction 356
10.2 Graphical approach to differentiation 357
10.3 Limits and continuity 358
10.4 Rate of change at a specific point 362
10.5 Rate of change at a general point 364
10.6 Existence of derivatives 370
10.7 Common derivatives 372
10.8 Differentiation as a linear operator 375
Review exercises 10 385
Chapter 11 Techniques of differentiation 386
11.1 Introduction 386
11.2 Rules of differentiation 386
11.3 Parametric, implicit and logarithmic differentiation 393
11.4 Higher derivatives 400
Review exercises 11 404
Chapter 12 Applications of differentiation 406
12.1 Introduction 406
12.2 Maximum points and minimum points 406
12.3 Points of inflexion 415
12.4 The Newton-Raphson method for solving equations 418
12.5 Differentiation of vectors 423
Review exercises 12 427
Chapter 13 Integration 428
13.1 Introduction 428
13.2 Elementary integration 429
13.3 Definite and indefinite integrals 442
Review exercises 13 453
Chapter 14 Techniques of integration 457
14.1 Introduction 457
14.2 Integration by parts 457
14.3 Integration by substitution 463
14.4 Integration using partial fractions 466
Review exercises 14 468
Chapter 15 Applications of integration 471
15.1 Introduction 471
15.2 Average value of a function 471
15.3 Root mean square value of a function 475
Review exercises 15 479
Chapter 16 Further topics in integration 480
16.1 Introduction 480
16.2 Orthogonal functions 480
16.3 Improper integrals 483
16.4 Integral properties of the delta function 489
16.5 Integration of piecewise continuous functions 491
16.6 Integration of vectors 493
Review exercises 16 494
Chapter 17 Numerical integration 496
17.1 Introduction 496
17.2 Trapezium rule 496
17.3 Simpson's rule 500
Review exercises 17 505
Chapter 18 Taylor polynomials, Taylor series and Maclaurin series 507
18.1 Introduction 507
18.2 Linearization using first-order Taylor polynomials 508
18.3 Second-order Taylor polynomials 513
18.4 Taylor polynomials of the nth order 517
18.5 Taylor's formula and the remainder term 521
18.6 Taylor and Maclaurin series 524
Review exercises 18 532
Chapter 19 Ordinary differential equations I 534
19.1 Introduction 534
19.2 Basic definitions 535
19.3 First-order equations: simple equations and separation of variables 540
19.4 First-order linear equations: use of an integrating factor 547
19.5 Second-order linear equations 558
19.6 Constant coefficient equations 560
19.7 Series solution of differential equations 584
19.8 Bessel's equation and Bessel functions 587
Review exercises 19 601
Chapter 20 Ordinary differential equations II 603
20.1 Introduction 603
20.2 Analogue simulation 603
20.3 Higher order equations 606
20.4 State-space models 609
20.5 Numerical methods 615
20.6 Euler's method 616
20.7 Improved Euler method 620
20.8 Runge-Kutta method of order 4 623
Review exercises 20 626
Chapter 21 The Laplace transform 627
21.1 Introduction 627
21.2 Definition of the Laplace transform 628
21.3 Laplace transforms of some common functions 629
21.4 Properties of the Laplace transform 631
21.5 Laplace transform of derivatives and integrals 635
21.6 Inverse Laplace transforms 638
21.7 Using partial fractions to find the inverse Laplace transform 641
21.8 Finding the inverse Laplace transform using complex numbers 643
21.9 The convolution theorem 647
21.10 Solving linear constant coefficient differential equations using the Laplace transform 649
21.11 Transfer functions 659
21.12 Poles, zeros and the s plane 668
21.13 Laplace transforms of some special functions 675
Review exercises 21 678
Chapter 22 Difference equations and the z transform 681
22.1 Introduction 681
22.2 Basic definitions 682
22.3 Rewriting difference equations 686
22.4 Block diagram representation of difference equations 688
22.5 Design of a discrete-time controller 693
22.6 Numerical solution of difference equations 695
22.7 Definition of the z transform 698
22.8 Sampling a continuous signal 702
22.9 The relationship between the z transform and the Laplace transform 704
22.10 Properties of the z transform 709
22.11 Inversion of z transforms 715
22.12 The z transform and difference equations 718
Review exercises 22 720
Chapter 23 Fourier series 722
23.1 Introduction 722
23.2 Periodic waveforms 723
23.3 Odd and even functions 726
23.4 Orthogonality relations and other useful identities 732
23.5 Fourier series 733
23.6 Half-range series 745
23.7 Parseval's theorem 748
23.8 Complex notation 749
23.9 Frequency response of a linear system 751
Review exercises 23 755
Chapter 24 The Fourier transform 757
24.1 Introduction 757
24.2 The Fourier transform - definitions 758
24.3 Some properties of the Fourier transform 761
24.4 Spectra 766
24.5 The $t-\omega$ duality principle 768
24.6 Fourier transforms of some special functions 770
24.7 The relationship between the Fourier transform and the Laplace transform 772
24.8 Convolution and correlation 774
24.9 The discrete Fourier transform 783
24.10 Derivation of the d.f.t. 787
24.11 Using the d.f.t. to estimate a Fourier transform 790
24.12 Matrix representation of the d.f.t. 792
24.13 Some properties of the d.f.t. 793
24.14 The discrete cosine transform 795
24.15 Discrete convolution and correlation 801
Review exercises 24 821
Chapter 25 Functions of several variables 823
25.1 Introduction 823
25.2 Functions of more than one variable 823
25.3 Partial derivatives 825
25.4 Higher order derivatives 829
25.5 Partial differential equations 832
25.6 Taylor polynomials and Taylor series in two variables 835
25.7 Maximum and minimum points of a function of two variables 841
Review exercises 25 846
Chapter 26 Vector calculus 849
26.1 Introduction 849
26.2 Partial differentiation of vectors 849
26.3 The gradient of a scalar field 851
26.4 The divergence of a vector field 856
26.5 The curl of a vector field 859
26.6 Combining the operators grad, div and curl 861
26.7 Vector calculus and electromagnetism 864
Review exercises 26 865
Chapter 27 Line integrals and multiple integrals 867
27.1 Introduction 867
27.2 Line integrals 867
27.3 Evaluation of line integrals in two dimensions 871
27.4 Evaluation of line integrals in three dimensions 873
27.5 Conservative fields and potential functions 875
27.6 Double and triple integrals 880
27.7 Some simple volume and surface integrals 889
27.8 The divergence theorem and Stokes' theorem 895
27.9 Maxwell's equations in integral form 899
Review exercises 27 901
Chapter 28 Probability 903
28.1 Introduction 903
28.2 Introducing probability 904
28.3 Mutually exclusive events: the addition law of probability 909
28.4 Complementary events 913
28.5 Concepts from communication theory 915
28.6 Conditional probability: the multiplication law 919
28.7 Independent events 925
Review exercises 28 930
Chapter 29 Statistics and probability distributions 933
29.1 Introduction 933
29.2 Random variables 934
29.3 Probability distributions - discrete variable 935
29.4 Probability density functions - continuous variable 936
29.5 Mean value 938
29.6 Standard deviation 941
29.7 Expected value of a random variable 943
29.8 Standard deviation of a random variable 946
29.9 Permutations and combinations 948
29.10 The binomial distribution 953
29.11 The Poisson distribution 957
29.12 The uniform distribution 961
29.13 The exponential distribution 962
29.14 The normal distribution 963
29.15 Reliability engineering 970
Review exercises 29 977
Appendix I Representing a continuous function and a sequence as a sum of weighted impulses 979
Appendix II The Greek alphabet 981
Appendix III SI units and prefixes 982
Appendix IV The binomial expansion of $\left(\frac{n-N}{n}\right)^{n}$ 982
Index 983

Lecturer Resources

ON THE
For password-protected online resources tailored to support the use of this textbook in teaching, please visit www.pearsoned.co.uk/croft

This page intentionally left blank

Preface

Audience

This book has been written to serve the mathematical needs of students engaged in a first course in engineering at degree level. It is primarily aimed at students of electronic, electrical, communications and systems engineering. Systems engineering typically encompasses areas such as manufacturing, control and production engineering. The textbook will also be useful for engineers who wish to engage in self-study and continuing education.

Motivation

Engineers are called upon to analyse a variety of engineering systems, which can be anything from a few electronic components connected together through to a complete factory. The analysis of these systems benefits from the intelligent application of mathematics. Indeed, many cannot be analysed without the use of mathematics. Mathematics is the language of engineering. It is essential to understand how mathematics works in order to master the complex relationships present in modern engineering systems and products.

Abstract

Aims There are two main aims of the book. Firstly, we wish to provide an accessible, readable introduction to engineering mathematics at degree level. The second aim is to encourage the integration of engineering and mathematics.

Content

The first three chapters include a review of some important functions and techniques that the reader may have met in previous courses. This material ensures that the book is self-contained and provides a convenient reference.

Traditional topics in algebra, trigonometry and calculus have been covered. Also included are chapters on set theory, sequences and series, Boolean algebra, logic, difference equations and the z transform. The importance of signal processing techniques is reflected by a thorough treatment of integral transform methods. Thus the Laplace, z and Fourier transforms have been given extensive coverage.

In the light of feedback from readers, new topics and new examples have been added in the fifth edition. Recognizing that motivation comes from seeing the applicability of mathematics we have focused mainly on the enhancement of the range of applied examples. These include topics on the discrete cosine transform, image processing, applications in music technology, communications engineering and frequency modulation.

Style

The style of the book is to develop and illustrate mathematical concepts through examples. We have tried throughout to adopt an informal approach and to describe mathematical processes using everyday language. Mathematical ideas are often developed by examples rather than by using abstract proof, which has been kept to a minimum. This reflects the authors' experience that engineering students learn better from practical examples, rather than from formal abstract development. We have included many engineering examples and have tried to make them as free-standing as possible to keep the necessary engineering prerequisites to a minimum. The engineering examples, which have been carefully selected to be relevant, informative and modern, range from short illustrative examples through to complete sections which can be regarded as case studies. A further benefit is the development of the link between mathematics and the physical world. An appreciation of this link is essential if engineers are to take full advantage of engineering mathematics. The engineering examples make the book more colourful and, more importantly, they help develop the ability to see an engineering problem and translate it into a mathematical form so that a solution can be obtained. This is one of the most difficult skills that an engineer needs to acquire. The ability to manipulate mathematical equations is by itself insufficient. It is sometimes necessary to derive the equations corresponding to an engineering problem. Interpretation of mathematical solutions in terms of the physical variables is also essential. Engineers cannot afford to get lost in mathematical symbolism.

Format

Important results are highlighted for easy reference. Exercises and solutions are provided at the end of most sections; it is essential to attempt these as the only way to develop competence and understanding is through practice. A further set of review exercises is provided at the end of each chapter. In addition some sections include exercises that are intended to be carried out on a computer using a technical computing language such as MATLAB ${ }^{\circledR}$, GNU Octave, Mathematica or Python ${ }^{\circledR}$. The MATLAB ${ }^{\circledR}$ command syntax is supported in several software packages as well as MATLAB ${ }^{\circledR}$ itself and will be used throughout the book.

Supplements

A comprehensive Solutions Manual is obtainable free of charge to lecturers using this textbook. It is also available for download via the web at www.pearsoned.co.uk/croft.

Finally we hope you will come to share our enthusiasm for engineering mathematics and enjoy the book.

Anthony Croft
Robert Davison
Martin Hargreaves
James Flint
March 2017

Acknowledgements

We are grateful to the following for permission to reproduce copyright material:

Tables

Table 29.7 from Biometrika Tables for Statisticians, Vol. 1, New York: Holt, Rinehart \& Winston (Hays, W.L. and Winkler, R.L. 1970) Table 1, © Cambridge University Press.

Text

General Displayed Text on page xviii from https://www.mathworks.com/products/ matlab.html, MATLAB ${ }^{\circledR}$ is a registered trademark of The MathWorks, Inc.; General Displayed Text xviii from Mathematica, https://www.wolfram.com/mathematica/, © Wolfram; General Displayed Text xviii from https://www.python.org/, Python ${ }^{\circledR}$ and the Python logos are trademarks or registered trademarks of the Python Software Foundation, used by Pearson Education Ltd with permission from the Foundation; General Displayed Text on page 291 from http://www.blu-raydisc.com/en/, Blu-ray Disc ${ }^{\mathrm{TM}}$ is a trademark owned by Blu-ray Disc Association (BDA); General Displayed Text on page 291 from http://wimaxforum.org/home, WiMAX ${ }^{\circledR}$ is a registered trademarks of the WiMAX Forum. This work is produced by Pearson Education and is not endorsed by any trademark owner referenced in this publication.

This page intentionally left blank

1 Review of algebraic techniques

Contents

1.1	Introduction	1
1.2	Laws of indices	2
1.3	Number bases	11
1.4	Polynomial equations	20
1.5	Algebraic fractions	26
1.6	Solution of inequalities	33
1.7	Partial fractions	39
1.8	Summation notation	46
Review exercises 1	50	

1.1 INTRODUCTION

This chapter introduces some algebraic techniques which are commonly used in engineering mathematics. For some readers this may be revision. Section 1.2 examines the laws of indices. These laws are used throughout engineering mathematics. Section 1.3 looks at number bases. Section 1.4 looks at methods of solving polynomial equations. Section 1.5 examines algebraic fractions, while Section 1.6 examines the solution of inequalities. Section 1.7 looks at partial fractions. The chapter closes with a study of summation notation.

Computers are used extensively in all engineering disciplines to perform calculations. Some of the examples provided in this book make use of the technical computing language MATLAB ${ }^{\oplus}$, which is commonly used in both an academic and industrial setting.

Because MATLAB ${ }^{\circledR}$ and many other similar languages are designed to compute not just with single numbers but with entire sequences of numbers at the same time, data is entered in the form of arrays. These are multi-dimensional objects. Two particular types of array are vectors and matrices which are studied in detail in Chapters 7 and 8.

Apart from being able to perform basic mathematical operations with vectors and matrices, MATLAB ${ }^{\circledR}$ has, in addition, a vast range of built-in computational functions which are straightforward to use but nevertheless are very powerful. Many of these highlevel functions are accessible by passing data to them in the form of vectors and matrices. A small number of these special functions are used and explained in this text. However, to get the most out of a technical computing language it is necessary to develop a good understanding of what the software can do and to make regular reference to the manual.

1.2 LAWS OF INDICES

Consider the product $6 \times 6 \times 6 \times 6 \times 6$. This may be written more compactly as 6^{5}. We call 5 the index or power. The base is 6 . Similarly, $y \times y \times y \times y$ may be written as y^{4}. Here the base is y and the index is 4 .

Example 1.1 Write the following using index notation:
(a) $(-2)(-2)(-2)$
(b) 4.4.4.5.5
(c) $\frac{y y y}{x x x x}$
(d) $\frac{a a(-a)(-a)}{b b(-b)}$

Solution (a) $(-2)(-2)(-2)$ may be written as $(-2)^{3}$.
(b) 4.4.4.5.5 may be written as $4^{3} 5^{2}$.
(c) $\frac{y y y}{x x x x}$ may be written as $\frac{y^{3}}{x^{4}}$.
(d) Note that $(-a)(-a)=a a$ since the product of two negative quantities is positive. So $a a(-a)(-a)=a a a a=a^{4}$. Also $b b(-b)=-b b b=-b^{3}$. Hence

$$
\frac{a a(-a)(-a)}{b b(-b)}=\frac{a^{4}}{-b^{3}}=-\frac{a^{4}}{b^{3}}
$$

Example 1.2 Evaluate

(a) 7^{3}
(b) $(-3)^{3}$
(c) $2^{3}(-3)^{4}$

Solution (a) $7^{3}=7.7 .7=343$
(b) $(-3)^{3}=(-3)(-3)(-3)=-27$
(c) $2^{3}(-3)^{4}=8(81)=648$

Most scientific calculators have an x^{y} button to enable easy calculation of expressions of a similar form to those in Example 1.2.

1.2.1 Multiplying expressions involving indices

Consider the product $\left(6^{2}\right)\left(6^{3}\right)$. We may write this as

$$
\left(6^{2}\right)\left(6^{3}\right)=(6.6)(6.6 .6)=6^{5}
$$

So

$$
6^{2} 6^{3}=6^{5}
$$

This illustrates the first law of indices which is

$$
a^{m} a^{n}=a^{m+n}
$$

When expressions with the same base are multiplied, the indices are added.

Example 1.3 Simplify each of the following expressions:
(a) $3^{9} 3^{10}$
(b) $4^{3} 4^{4} 4^{6}$
(c) $x^{3} x^{6}$
(d) $y^{4} y^{2} y^{3}$

Solution (a) $3^{9} 3^{10}=3^{9+10}=3^{19}$
(b) $4^{3} 4^{4} 4^{6}=4^{3+4+6}=4^{13}$
(c) $x^{3} x^{6}=x^{3+6}=x^{9}$
(d) $y^{4} y^{2} y^{3}=y^{4+2+3}=y^{9}$

Engineering application 1.1

Power dissipation in a resistor

The resistor is one of the three fundamental electronic components. The other two are the capacitor and the inductor, which we will meet later. The role of the resistor is to reduce the current flow within the branch of a circuit for a given voltage. As current flows through the resistor, electrical energy is converted into heat. Because the energy is lost from the circuit and is effectively wasted, it is termed dissipated energy. The rate of energy dissipation is known as the power, P, and is given by

$$
\begin{equation*}
P=I^{2} R \tag{1.1}
\end{equation*}
$$

where I is the current flowing through the resistor and R is the resistance value. Note that the current is raised to the power 2 . Note that power, P, is measured in watts; current, I, is measured in amps; and resistance, R, is measured in ohms.

There is an alternative formula for power dissipation in a resistor that uses the voltage, V, across the resistor. To obtain this alternative formula we need to use Ohm's law, which states that the voltage across a resistor, V, and the current passing through it, are related by the formula

$$
\begin{equation*}
V=I R \tag{1.2}
\end{equation*}
$$

From Equation (1.2) we see that

$$
\begin{equation*}
I=\frac{V}{R} \tag{1.3}
\end{equation*}
$$

Combining Equations (1.1) and (1.3) gives

$$
P=\left(\frac{V}{R}\right)^{2} R=\frac{V}{R} \cdot \frac{V}{R} \cdot R=\frac{V^{2}}{R}
$$

Note that in this formula for P, the voltage is raised to the power 2. Note an important consequence of this formula is that doubling the voltage, while keeping the resistance fixed, results in the power dissipation increasing by a factor of 4 , that is 2^{2}. Also trebling the voltage, for a fixed value of resistance, results in the power dissipation increasing by a factor of 9 , that is 3^{2}.

Similar considerations can be applied to Equation 1.1. For a fixed value of resistance, doubling the current results in the power dissipation increasing by a factor of 4 , and trebling the current results in the power dissipation increasing by a factor of 9 .

Consider the product $3\left(3^{3}\right)$. Now

$$
3\left(3^{3}\right)=3(3.3 .3)=3^{4}
$$

Also, using the first law of indices we see that $3^{1} 3^{3}=3^{4}$. This suggests that 3 is the same as 3^{1}. This illustrates the general rule:

$$
a=a^{1}
$$

Raising a number to the power 1 leaves the number unchanged.
Example 1.4 Simplify (a) $5^{6} 5 \quad$ (b) $x^{3} x x^{2}$
Solution $\begin{array}{lll}\text { (a) } 5^{6} 5=5^{6+1}=5^{7} & \text { (b) } x^{3} x x^{2}=x^{3+1+2}=x^{6}\end{array}$

1.2.2 Dividing expressions involving indices

Consider the expression $\frac{4^{5}}{4^{3}}$:

$$
\begin{aligned}
\frac{4^{5}}{4^{3}} & =\frac{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}{4 \cdot 4 \cdot 4} \\
& =4 \cdot 4 \quad \text { by cancelling } 4 \mathrm{~s} \\
& =4^{2}
\end{aligned}
$$

This serves to illustrate the second law of indices which is

$$
\frac{a^{m}}{a^{n}}=a^{m-n}
$$

When expressions with the same base are divided, the indices are subtracted.

Example 1.5 Simplify

(a) $\frac{5^{9}}{5^{7}}$
(b) $\frac{(-2)^{16}}{(-2)^{13}}$
(c) $\frac{x^{9}}{x^{5}}$
(d) $\frac{y^{6}}{y}$

Solution
(a) $\frac{5^{9}}{5^{7}}=5^{9-7}=5^{2}$
(b) $\frac{(-2)^{16}}{(-2)^{13}}=(-2)^{16-13}=(-2)^{3}$
(c) $\frac{x^{9}}{x^{5}}=x^{9-5}=x^{4}$
(d) $\frac{y^{6}}{y}=y^{6-1}=y^{5}$

Consider the expression $\frac{2^{3}}{2^{3}}$. Using the second law of indices we may write

$$
\frac{2^{3}}{2^{3}}=2^{3-3}=2^{0}
$$

But, clearly, $\frac{2^{3}}{2^{3}}=1$, and so $2^{0}=1$. This illustrates the general rule:

$$
a^{0}=1
$$

Any expression raised to the power 0 is 1 .

1.2.3 Negative indices

Consider the expression $\frac{4^{3}}{4^{5}}$. We can write this as

$$
\frac{4^{3}}{4^{5}}=\frac{4 \cdot 4 \cdot 4}{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}=\frac{1}{4.4}=\frac{1}{4^{2}}
$$

Alternatively, using the second law of indices we have

$$
\frac{4^{3}}{4^{5}}=4^{3-5}=4^{-2}
$$

So we see that

$$
4^{-2}=\frac{1}{4^{2}}
$$

Thus we are able to interpret negative indices. The sign of an index changes when the expression is inverted. In general we can state

$$
a^{-m}=\frac{1}{a^{m}} \quad a^{m}=\frac{1}{a^{-m}}
$$

Example 1.6 Evaluate the following:
(a) 3^{-2}
(b) $\frac{2}{4^{-3}}$
(c) 3^{-1}
(d) $(-3)^{-2}$
(e) $\frac{6^{-3}}{6^{-2}}$

Solution (a) $3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$
(b) $\frac{2}{4^{-3}}=2\left(4^{3}\right)=2(64)=128$
(c) $3^{-1}=\frac{1}{3^{1}}=\frac{1}{3}$
(d) $(-3)^{-2}=\frac{1}{(-3)^{2}}=\frac{1}{9}$
(e) $\frac{6^{-3}}{6^{-2}}=6^{-3-(-2)}=6^{-1}=\frac{1}{6^{1}}=\frac{1}{6}$

Example 1.7 Write the following expressions using only positive indices:
(a) x^{-4}
(b) $3 x^{-4}$
(c) $\frac{x^{-2}}{y^{-2}}$
(d) $3 x^{-2} y^{-3}$

Solution (a) $x^{-4}=\frac{1}{x^{4}}$
(b) $3 x^{-4}=\frac{3}{x^{4}}$
(c) $\frac{x^{-2}}{y^{-2}}=x^{-2} y^{2}=\frac{y^{2}}{x^{2}}$
(d) $3 x^{-2} y^{-3}=\frac{3}{x^{2} y^{3}}$

Engineering application 1.2

Power density of a signal transmitted by a radio antenna

A radio antenna is a device that is used to convert electrical energy into electromagnetic radiation, which is then transmitted to distant points.

An ideal theoretical point source radio antenna which radiates the same power in all directions is termed an isotropic antenna. When it transmits a radio wave, the wave spreads out equally in all directions, providing there are no obstacles to block the expansion of the wave. The power generated by the antenna is uniformly distributed on the surface of an expanding sphere of area, A, given by

$$
A=4 \pi r^{2}
$$

where r is the distance from the generating antenna to the wave front.
The power density, S, provides an indication of how much of the signal can potentially be received by another antenna placed at a distance r. The actual power received depends on the effective area or aperture of the antenna, which is usually expressed in units of m^{2}.

Electromagnetic field exposure limits for humans are sometimes specified in terms of a power density. The closer a person is to the transmitter, the higher the power density will be. So a safe distance needs to be determined.

The power density is the ratio of the power transmitted, P_{t}, to the area over which it is spread

$$
S=\frac{\text { power transmitted }}{\text { area }}=\frac{P_{\mathrm{t}}}{4 \pi r^{2}}=\frac{P_{\mathrm{t}}}{4 \pi} r^{-2} \mathrm{~W} \mathrm{~m}^{-2}
$$

Note that r in this equation has a negative index. This type of relationship is known as an inverse square law and is found commonly in science and engineering.

Note that if the distance, r, is doubled, then the area, A, increases by a factor of 4 (i.e. 2^{2}). If the distance is trebled, the area increases by a factor of 9 (i.e. 3^{2}) and so on. This means that as the distance from the antenna doubles, the power density, S, decreases to a quarter of its previous value; if the distance trebles then the power density is only a ninth of its previous value.

1.2.4 Multiple indices

Consider the expression $\left(4^{3}\right)^{2}$. This may be written as

$$
\left(4^{3}\right)^{2}=4^{3} \cdot 4^{3}=4^{3+3}=4^{6}
$$

This illustrates the third law of indices which is

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

Note that the indices m and n have been multiplied.
Example 1.8 Write the following expressions using a single index:
(a) $\left(3^{2}\right)^{4}$
(b) $\left(7^{-2}\right)^{3}$
(c) $\left(x^{2}\right)^{-3}$
(d) $\left(x^{-2}\right)^{-3}$

Solution (a) $\left(3^{2}\right)^{4}=3^{2 \times 4}=3^{8}$
(b) $\left(7^{-2}\right)^{3}=7^{-2 \times 3}=7^{-6}$
(c) $\left(x^{2}\right)^{-3}=x^{2 \times(-3)}=x^{-6}$
(d) $\left(x^{-2}\right)^{-3}=x^{-2 \times-3}=x^{6}$

Consider the expression $\left(2^{4} 5^{2}\right)^{3}$. We see that

$$
\begin{aligned}
\left(2^{4} 5^{2}\right)^{3} & =\left(2^{4} 5^{2}\right)\left(2^{4} 5^{2}\right)\left(2^{4} 5^{2}\right) \\
& =2^{4} 2^{4} 2^{4} 5^{2} 5^{2} 5^{2} \\
& =2^{12} 5^{6}
\end{aligned}
$$

This illustrates a generalization of the third law of indices which is

$$
\left(a^{m} b^{n}\right)^{k}=a^{m k} b^{n k}
$$

Example 1.9 Remove the brackets from
(a) $\left(2 x^{2}\right)^{3}$
(b) $\left(-3 y^{4}\right)^{2}$
(c) $\left(x^{-2} y\right)^{3}$

Solution (a) $\left(2 x^{2}\right)^{3}=\left(2^{1} x^{2}\right)^{3}=2^{3} x^{6}=8 x^{6}$
(b) $\left(-3 y^{4}\right)^{2}=(-3)^{2} y^{8}=9 y^{8}$
(c) $\left(x^{-2} y\right)^{3}=x^{-6} y^{3}$

Engineering application 1.3

Radar scattering

It has already been shown in Engineering application 1.2 that the power density of an isotropic transmitter of radio waves is

$$
S=\frac{P_{\mathrm{t}}}{4 \pi} r^{-2} \mathrm{~W} \mathrm{~m}^{-2}
$$

It is possible to use radio waves to detect distant objects. The technique involves transmitting a radio signal, which is then reflected back when it strikes a target. This weak reflected signal is then picked up by a receiving antenna, thus allowing a number of properties of the target to be deduced, such as its angular position and distance from the transmitter. This system is known as radar, which was originally an acronym standing for RAdio Detection And Ranging.

When the wave hits the target it produces a quantity of reflected power. The power depends upon the object's radar cross-section (RCS), normally denoted by the Greek lower case letter sigma, σ, and having units of m^{2}. The power reflected at the object, P_{r}, is given by

$$
P_{\mathrm{r}}=S \sigma=\frac{P_{\mathrm{t}} \sigma}{4 \pi} r^{-2} \mathrm{~W}
$$

Some military aircraft use special techniques to minimize the RCS in order to reduce the amount of power they reflect and hence minimize the chance of being detected.

If the reflected power at the target is assumed to spread spherically, when it returns to the transmitter position it will have the power density, S_{r}, given by

$$
S_{\mathrm{r}}=\frac{\text { power reflected at target }}{\text { area }}=\frac{P_{\mathrm{r}}}{4 \pi} r^{-2} \mathrm{~W} \mathrm{~m}^{-2}
$$

Substituting for the reflected power, P_{r}, gives

$$
\begin{aligned}
S_{\mathrm{r}} & =\frac{\text { power reflected at target }}{\text { area }}=\frac{\left(\frac{P_{\mathrm{t}} \sigma}{4 \pi} r^{-2}\right)}{4 \pi} r^{-2}=\frac{P_{\mathrm{t}} \sigma}{4 \pi \times 4 \pi}\left(r^{-2}\right)^{2} \\
& =\frac{P_{\mathrm{t}} \sigma}{(4 \pi)^{2}} r^{-4} \mathrm{~W} \mathrm{~m}^{-2}
\end{aligned}
$$

Note that the product of the two r^{-2} terms has been calculated using the third law of indices.

This example illustrates one of the main challenges with radar design which is that the power density returned by a distant object is very much smaller than the transmitted power, even for targets with a large RCS. For theoretical isotropic antennas, the received power density depends upon the factor r^{-4}. This factor diminishes rapidly for large values of r, that is, as the object being detected gets further away.

In practice, the transmit antennas used are not isotropic but directive and often scan the area of interest. They also make use of receive antennas with a large effective area which can produce a viable signal from the small reflected power densities.

1.2.5 Fractional indices

The third law of indices states that $\left(a^{m}\right)^{n}=a^{m n}$. If we take $a=2, m=\frac{1}{2}$ and $n=2$ we obtain

$$
\left(2^{1 / 2}\right)^{2}=2^{1}=2
$$

So when $2^{1 / 2}$ is squared, the result is 2 . Thus, $2^{1 / 2}$ is a square root of 2 . Each positive number has two square roots and so

$$
2^{1 / 2}=\sqrt{2}= \pm 1.4142 \ldots
$$

Similarly

$$
\left(2^{1 / 3}\right)^{3}=2^{1}=2
$$

so that $2^{1 / 3}$ is a cube root of 2 :

$$
2^{1 / 3}=\sqrt[3]{2}=1.2599 \ldots
$$

In general $2^{1 / n}$ is an nth root of 2 . The general law states

$$
x^{1 / n} \text { is an } n \text {th root of } x
$$

Example 1.10 Write the following using a single positive index:
(a) $\left(3^{-2}\right)^{1 / 4}$
(b) $x^{2 / 3} x^{5 / 3}$
(c) $y y^{-2 / 5}$
(d) $\sqrt{k^{3}}$

Solution (a) $\left(3^{-2}\right)^{1 / 4}=3^{-2 \times \frac{1}{4}}=3^{-1 / 2}=\frac{1}{3^{1 / 2}}$
(b) $x^{2 / 3} x^{5 / 3}=x^{2 / 3+5 / 3}=x^{7 / 3}$
(c) $y y^{-2 / 5}=y^{1} y^{-2 / 5}=y^{1-2 / 5}=y^{3 / 5}$
(d) $\sqrt{k^{3}}=\left(k^{3}\right)^{1 / 2}=k^{3 \times \frac{1}{2}}=k^{3 / 2}$

Example 1.11 Evaluate
(a) $8^{1 / 3}$
(b) $8^{2 / 3}$
(c) $8^{-1 / 3}$
(d) $8^{-2 / 3}$
(e) $8^{4 / 3}$

Solution We note that 8 may be written as 2^{3}.
(a) $8^{1 / 3}=\left(2^{3}\right)^{1 / 3}=2^{1}=2$
(b) $8^{2 / 3}=\left(8^{1 / 3}\right)^{2}=2^{2}=4$
(c) $8^{-1 / 3}=\frac{1}{8^{1 / 3}}=\frac{1}{2}$
(d) $8^{-2 / 3}=\frac{1}{8^{2 / 3}}=\frac{1}{4}$
(e) $8^{4 / 3}=\left(8^{1 / 3}\right)^{4}=2^{4}=16$

Engineering application 1.4

Skin depth in a radial conductor

When an alternating current signal travels along a conductor, such as a copper wire, most of the current is found near the surface of the conductor. Nearer to the centre of the conductor, the current diminishes. The depth of penetration of the signal, termed the skin depth, into the conductor depends on the frequency of the signal. Skin depth, illustrated in Figure 1.1, is defined as the depth at which the current

